Advisory Circular U.S. Department of Transportation Federal Aviation Administration Subject: HALOCARBON CLEAN AGENT HAND FIRE EXTINGUISHERS FOR USE IN AIRCRAFT TO REPLACE HALON 1211 Date: mm/dd/2005 AC No: 20-42XX Initiated By: NOTICE: An asterisk (*) following the number designating a paragraph indicates that explanatory material on the paragraph can be found in appendix A. X. Scope. This Advisory Circular (AC) contains minimum requirements for halocarbon clean agent hand extinguishers, intended to replace halon hand extinguishers onboard aircraft. Guidance for the use of Halon 1211, Halon 1301, water, dry powder, and carbon dioxide hand fire extinguishers can be found in AC No. 20-42C. #### CHAPTER 1. PURPOSE. This advisory circular provides methods acceptable to the Administrator for showing compliance with the hand fire extinguisher provisions in Parts 21, 25, 29, 91, 121, 125, 127, and 135 of the Federal Aviation Regulations (FARs) for Halocarbon Clean Agent extinguishers intended to replace halon hand-held extinguishers. These FARS refer to "Halon 1211 or equivalent". Acceptable equivalents to Halon 1211 are listed in this circular. Halocarbon clean agents are listed in this circular which are less toxic than Halon 1211, while providing an equivalent level of fire protection. Extinguishers are available for the agents listed in this circular that have passed the required fire tests. This circular also provides new guidance for selection and use of these extinguishers. The information in this AC is considered acceptable for use by the owners/operators of small aircraft. This AC is intended for use by those responsible for selecting, purchasing, installing, approving, and maintaining hand fire extinguishers and for those responsible for training personnel in their use. This AC does not constitute a regulation and is not intended to require anything beyond what is specifically required by the regulations. ### CHAPTER 2. FOCUS. The Halon replacement halocarbon clean agents in this advisory circular were introduced in response to restrictions on the production of ozone-depleting halon fire extinguishing agents under the Clean Air Act Amendments of 1990 which implemented the Montreal Protocol signed September 16, 1987, as amended. The need to switch to environmentally safe fire extinguishers and the availability of approved hand-held extinguisher models containing the halocarbons HCFC Blend B, HFC 227ea and HFC 236fa require that a new AC be issued for halocarbon hand-held extinguishers to replace Halon 1211. This AC provides quidance for the fire-fighting effectiveness and safe nontoxic use of halocarbon clean agent hand-held extinguishers intended to replace Halon 1211 hand-held extinguishers in transport category aircraft, as well as general guidance. The safe non-toxic use guidance for Halocarbon clean agents (Halon replacements) is based on an assessment of the relationship between halocarbon agents in the blood and cardiac sensitization. This science-based approach has been adopted by the National Fire Protection Association (NFPA) for total flood agents (NFPA 2001) and has been published in the peer-reviewed toxicology literature. This guidance is more accurate than that used for the Halons in AC No. 20-42C. HCFC Blend B, HFC227ea, and HFC 236fa are safe, acceptable alternatives to Halon 1211 that provide equivalent fire fighting performance, and meet the requirements outlined in this circular. Two of these agents, namely HFC227ea and HFC236fa, while providing an equivalent level of fire protection are much less cardiotoxic than Halon 1211, as well as having higher anesthetic thresholds, and can be safely used in much smaller aircraft compartments than Halon 1211. ### CHAPTER 3. NEW ADVISORY CIRCULAR. This advisory circular is intended to supplement AC 20-42C, Hand Fire-Extinguishers for use in Aircraft, dated, 3/7/1984 , which addresses Halon1211, Halon 1301, water, dry powder and Carbon Dioxide Hand Fire-Extinguishers. ### RELATED REGULATIONS, DIRECTIVES, CIRCULARS, INFORMATION. ### 4.1 RELATED FAR SECTIONS AND CODE OF FEDERAL REGULATIONS (CFR). - 4.1.1 FAR 21.305. - 4.1.2 FAR 23.561. - 4.1.3 FAR 25.561; 25.851. ### 25.851. States that The following minimum number of hand fire extinguishers must be conveniently located and evenly distributed in passenger compartments: | Passenger Capacity | Number | of | Extinguishers | |--------------------|--------|----|---------------| | 7 through 30 | 1 | | | | 31 through 60 | 2 | | | | 61 through 200 | 3 | | | | 201 through 300 | | 4 | | | 301 through 400 | | 5 | | | 401 through 500 | | 6 | | | 501 through 600 | | 7 | | | 601 through 700 | | 8 | | FAR 25.851 also specifies specific locations for extinguishers for the aircraft cabin, and for class A, B and E cargo/baggage compartments accessible to crewmember in-flight. - 4.1.4 FAR 27.561. - 4.1.5 FAR 29.561; 29.851; 29.853(e) and (f). - 4.1.6 FAR 91.122 (altitude requirements) - 4.1.7 FAR 91.193(c). Could not find referenced section in FARs - 4.1.8 FAR 121.309(c). - 4.1.9 FAR 125.119(b) and (c). - 4.1.10 FAR 127.107(e) Could not find referenced section in the FARs - 4.1.11 FAR 135.155. - CFR Title 46 and 49 - 4.1.13 CFR Title 40: Protection of the Environment, Part 82-Protection of Stratospheric Ozone, Subpart G-Significant New Alternatives Policy Program and Subpart H-Halon Emissions Reduction ### 4.2 RELATED ADVISORY CIRCULARS AND AIRWORTHINESS DIRECTIVES AC 120-80 In-Flight Fires 4.2.1 4.2.2 AC 20-42C Hand Fire Extinguishers for Use in Aircraft 4.2.3 AD 93-07-15(2)(i) Airworthiness Directives; BOEING AND MCDONNELL DOUGLAS Models 707, 727, 737,747, and 757 and McDonnell Douglas Models DC-8, DC-9, and DC-10 Series Airplanes #### 4.3 RELATED DOCUMENTS - 4.3.1 Webster, Harry, "Development of a Minimum Performance Standard for Hand-Held Fire Extinguishers as a Replacement for Halon 1211 on Civilian Transport Category Aircraft", Federal Aviation Administration Report No.DOT/FAA/AR-01/37 - 4.3.2 FAA Administrator's Policy Letter for Handhelds (does not exist yet) ### CHAPTER 5. DEFINITIONS. **Halon.** A short derivation for "halogenated hydrocarbon" whose chemical structure is identified as a four digit number representing, respectively, the number of carbon, fluorine, chlorine, and bromine atom present in one molecule. Halon fire extinguishing agents approved for use include Halon 1211, Halon 1301, and a combination of the two (Halon 1211/1301). Both are liquefied gases and typified as "clean agents," leaving no agent residue after discharge. Halons primarily extinguish fire by chemically interrupting the combustion chain reaction rather than by heat removal or physically smothering. - 5.2 Halon 1211. The chemical name is bromochlorodifluoromethane, CBrC1F2. Halon 1211 is a multipurpose, Class A, B, C rated agent effective against flammable liquid fires. Due to its relatively high boiling point $(-4)^\circ$ $C/+25^{\circ}$ F), Halon - 1211 discharges as an 85 percent liquid stream offering a long agent throw range. - 5.3 Hand Fire Extinguisher (Aircraft Hand Fire Extinguisher/Portable Fire Extinguisher). An approved, portable fire extinguisher as outlined in Section 6 of this AC, which can be used by aircraft occupants to combat accessible, incipient, on-board fires. - 5.4 Halocarbon Clean Agents. A halocarbon clean agent is an agent that contains as primary components one or more organic compounds containing one or more of the elements fluorine, chlorine, bromine, or iodine. Halocarbon Clean Agents that are currently commercialized include the hydrochlorofluorocarbons (HCFCs), perfluorocarbons (FCs or PFCs), hydrofluorocarbons (HFCs), fluoroiodocarbons (FICs), and fluoroketones (FKs), as well as the halogenated halocarbons (Halons). Halocarbon Clean Agents are electrically non-conducting, volatile, or gaseous fire extinguishants To meet SNAP approval, Halocarbon Clean Agents intended to replace Halons must meet acceptable global environmental guidelines, have an acceptable toxicity and must be effective for the intended use. . As "clean agents", they do not leave a residue upon evaporation. Halocarbon clean agents SNAP approved for use on aircraft to replace Halon 1211 include HCFC Blend B, HFC 227ea and HFC236fa. Halocarbon clean agents have their greatest effectiveness on Class B and C fires. Extinguishers with greater capacity are also rated for Class A fires. To achieve the minimum 1A rating, one of the multiple tests required is the extinguishment of an eight feet wide by eight feet tall wood panel. While smaller extinguishers do not contain a sufficient amount of agent to extinguish this size of fire, they have been shown to be effective against Class A fires, such as seat fires, onboard aircraft, and smaller class A fires. Detailed information on agent characteristics, concentration requirements, health hazards, and extinguishing limitations may be obtained by consulting the agent manufacturers. - 5.6 HCFC Blend B. This extinguishing agent is a blend comprised primarily of the chemical 1,1-dichloro-2,2,2-trifluoroethane, CF_3CHCl_2 (HCFC-123). Two inert gases are blended with the HCFC-123 to enhance flow distribution and fire extinguishing performance. The boiling point of the blend is 80.6°F (27°C). Due to this high boiling point, HCFC Blend B is discharged primarily as a liquid stream which then readily evaporates, offering a long agent throw range (See appendix A1). HCFC is effective against class A, B, and C fires. HCFC Blend B extinguishers rated for a 1A fire contain 11.0 Lb. of agent." - HFC 227ea . This extinguishing agents comprised of the chemical 1,1,1,2,3,3-heptafluoropropane CF3CHFCF3 (HFC-227ea). The boiling point of the agent is +1.9°F (-16.4°C). Due to this boiling point, HFC-227ea is discharged as a mixed liquid and vapor stream which readily evaporates. HFC-227ea is effective against Class B, and C fires. HFC-227ea extinguishers rated for a 1A fire contain 11 lbs. of agent. - 5.8
HFC-236fa. This extinguishing agents comprised of the chemical 1,1,1,3,3,3 Hexafluoropropane (CF₃CH₂CF₃). The boiling point of the agent is $+29.5^{\circ}$ F (-1.4° C). Due to its relatively high boiling point), HFC-236fa discharges predominately as a liquid stream offering a long agent throw range. (See appendix A1). HFC-236fa is effective against class A, B, and C fires. HFC-236fa extinguishers rated for a 1A fire contain 9.5 lbs. of agent. - 5.9 Lowest Observable Adverse Effect Level (LOAEL). The lowest concentration at which an adverse toxicological or cardiac sensitization event has been observed. - 5.10 No Observed Adverse Effect Level (NOAEL). The highest concentration at which no adverse toxicological or cardiac sensitization event has been observed. - 5.11 Halon Replacement. "Replacements" denote halocarbon agents intended to replace Halon 1211. #### CHAPTER 6. APPROVED HAND FIRE FXTINGUISHERS. Hand fire extinguishers are acceptable under FAR Sections 25.851(a)(1), 29.851(a)(1), 121.309(c), 127.107(c) and 135.155 if they have been approved in accordance with FAR 21, Section 21.305. In accordance with Section 21.305(d) of the FAR, the Federal Aviation Administration (FAA) accepts hand fire extinguishers approved in a manner equivalent to Underwriters' Laboratories, Inc. (UL), Factory Mutual Research Corp., or approved by the U.S. Coast Guard under Title 49 of the CFR for use in aircraft. In accordance with Far 21, Section 21.305, FAA advisory circulars are one means for approval of hand fire extinguishers. Nothing in this AC is intended to restrict new technologies or alternate arrangements provided that the level of safety prescribed by this AC is not lowered. Although Parts 91 and 125 do not require FAA approval of hand fire extinguishers, the information in this AC is considered acceptable for use by Parts 91 and 125 operators. Operators of non-transport category aircraft should become familiar with the information in this AC and the precautions listed in paragraph 8.3.1. In addition, the recommendations of the extinguisher manufacturer should be considered. Any agent that is to be recognized by this AC or proposed for inclusion in this AC shall first be evaluated in a manner equivalent to the process used by the U.S. Environmental Protection Agency's Significant New Alternatives Policy (SNAP) program in accordance with the CFR Title 40, Part 82, Subpart G. Agents covered by this circular have been reviewed and approved by the U.S. Environmental Protection Agency SNAP program for environmental and toxicological acceptability as halon replacements. The minimum safe volumes of spaces to be protected by Halocarbon extinguishers in this AC may be smaller than allowed by SNAP and Underwriters Lab (UL), Inc. This FAA safe weight/volume guidance supercedes UL and SNAP guidance in this area. The reasons for this higher safety standard for aircraft are: 1) the inability for passengers to escape from an aircraft when airborne, 2) Halocarbon agents are much heavier than air and stratify with time, causing potentially high concentrations in the forward section of an aircraft in steep descent, and 3) Release of the contents of an extinguisher into the rarified air at altitude results in a higher toxic hazard than a sea level release. Halocarbon Clean Agent extinguishers intended to replace Halon 1211 5B:C size extinguishers onboard transport category aircraft should pass the Hidden Fire Test and The Seat Fire/Toxicity Test identified in Report No. DOT/FAA/AR-01/37 "Development of a Minimum Performance Standard (MPS) for Hand-Held Fire Extinguishers as a Replacement for Halon 1211 on Civilian Transport Category Aircraft". The fire test criteria specified in this MPS ensure that extinguishers to replace Halon 1211 will have equal fire fighting performance and an acceptable level of toxicity for thermal decomposition products of the agent. Safe agent concentrations are provided in this circular. A policy letter from the FAA Administrator is the legal basis = the labeling, stamping and MPS testing requirements for Halocarbon hand-held extinguishers intended to replace Halon 1211. Halocarbon replacement agents covered in this circular must meet the additional requirements outlined in the letter from the Administrator of the FAA, stating that the Minimum Performance Standards for UL rated 5B:C handheld extinguishers are met. A Permanent label must be affixed to the extinguisher identifying FAA approval for use on board commercial aircraft based on the MPS test results. In addition, the minimum safe volumes for pressurized and unpressurized aircraft should be stamped on the extinguisher bottles, based on the safe-non-toxic agent concentrations provided in this circular. The stamped volumes should be based on no ventilation. The UL minimum safe volumes should not be marked on the extinguishers, because UL minimums are not applicable for aircraft use. Note that the UL and MPS fire tests are extinguisher dependent. The extinguisher design effects extinguisher performance. The user must rely on the FAA approval label and the stamped UL rating, not the agent weight to select extinguishers for an aircraft. Halocarbon clean agents HCFC-Blend B, HFC-227ea, and HFC-236fa have been reviewed and approved by the U.S. Environmental Protection Agency SNAP program for environmental and toxicological acceptability as halon replacements. UL rated 5B:C HCFC Blend B, HFC227ea, and HFC237ea extinguishers are available that have passed the minimum performance standard for handheld extinguishers. #### CHAPTER 7. BACKGROUND. ### 7.1. TYPES OF FIRES. To properly select an appropriate extinguisher for use in an aircraft, it is recommended that consideration be given to the following classes of fires (as defined in the National Fire Protection Association (NFPA) Standard 10) that are likely to occur: - 7.1.1 Class A. Fires involving ordinary combustible materials, such as wood, cloth, paper, rubber, and plastics, by cooling the material below it's ignition temperature and soaking the material to prevent reignition. - 7.1.2 Class B. Fires involving flammable liquids, oils, greases, tars, oil base paints, lacquers, and flammable gases for which extinguishing agents such as CO_2 are essential. - 7.1.3 Class C. Fires which involve energized electrical equipment and where the electrical nonconductivity of the, extinguishing media is of importance. 7.1.4 Class D. Fires which involve combustible metals, such as magnesium, titanium, zirconium, sodium, lithium, and potassium, and require extinguishing agents of the, dry powder types. The recommendations of the manufacturer for use of those extinguishers should he followed because of the possible chemical reaction between the burning metal and the extinguishing agent. ### 7.2. EXTINGUISHING AGENTS APPROPRIATE FOR TYPES OF FIRES. The following extinguishing agents are recommended, as appropriate, for use on the types of fires specified below and as defined in paragraph 7a of this AC: - 7.2.1 Water Class A. - 7.2.2 Halocarbon Clean Agents Class A, B, or C. - 7.3. NUMERAL RATINGS. Numerals are used with the identifying letters for extinguishers labeled for Class A and Class B fires. The "numeral" indicates the relative extinguishing effectiveness of the device on a given size fire which is dependent on the agent, the capacity of the device, discharge times, and design features. For example, an extinguisher rated as 4A should extinguish about twice as much Class A fire as a 2A rated extinguisher. A 2 1/2-gallon water extinguisher is rated 2A. On an extinguisher rated for Class B fires, the numeral rating precedes the letter "B". Numeral ratings are not used for extinguishers labeled for Class C or D fires. Extinguishers that are effective on more than one class of fires have multiple "numeral-letter" and "letter" classifications and ratings; for example, 5B:C. ### CHAPTER 8: HALOCARBON CLEAN AGENTS REPACING HALON 1211. ### 8.1 SPECIFICATIONS. For hand fire extinguishers employing halocarbon clean agents replacing Halon 1211, the following ASTM Specifications apply: - HCFC Blend B should meet the requirements of ASTM Specification ASTM D7122. - 8.12 HFC 227ea should meet the requirements of ASTM Specification D6064. - HFC 236fa should meet the requirements of ASTM Specification D6541. ### 8.2* GUIDANCE FOR FIRE FIGHTING EFFECTIVENESS OF HALOCARBON EXTINGUISHERS _____.1 For occupied spaces on transport category aircraft, extinguishers employing halocarbon clean agents, replacing Halon 1211, should have a minimum UL 5B:C ratings, and not less than 8 seconds effective discharge time, and not less than an 8-foot (3 m) throw range. Longer throw ranges provide a significant advantage in fighting fires in large transport category aircraft. Halocarbon Clean Agent extinguishers with a minimum UL 5B:C rating, intended to replace halons in transport category aircraft should contain the following statement on the label, "FAA Approved. Meets the minimum performance standards for handheld extinguishers as defined by DOT/FAA/AR-01/37." The minimum performance standard provides the test requirements for the extinguishment of hidden fires and seat fires. It also provides the toxicity requirements for agent decomposition products. (Agent toxicity guidance is provided in this advisory circular). - 8.2.2 Always provide the recommended number of hand held extinguishers with the proper UL rating, even in spaces where the toxicity guidelines are exceeded. The failure to extinguish a fire has catastrophic consequences for all occupants of that aircraft. Agent toxicity concerns are secondary to extinguishing the fire. - 8.2.3 Do not substitute two smaller extinguishers for one extinguisher of the proper UL rating. The fire can grow quickly prior to the discharge of the second extinguisher. - 8.2.4 Extinguish the fire immediately. Fires can grow exponentially with time. - 8.2.5 Best results in fire fighting are generally
obtained by attacking the base of the fire at the near edge of the, fire and progressing toward the back of the fire by moving the fire extinguisher nozzle rapidly with a side-to-side sweeping motion. - 8.2.6 The effective discharge time of a 5B rated extinguisher is approximately 9 seconds for a 5 B:C extinguisher and 14 seconds for a 2A:10B:C extinguisher. Due to this relatively short effective time span, proper training and use of the fire extinguishers are important. - 8.2.7 Care must be taken not to direct the initial discharge at the burning surface at close range because the high velocity stream may cause splashing and/or scattering of the burning material. - Never discharge halocarbon Clean Agents or water on Class D (burning metal) fires. These agents may react vigorously with the burning metal. - 8.2.9 For access to underseat, overhead, and other difficult to reach locations, extinguishers equipped with a discharge hose or adjustable wand are advantageous. An extinguisher with a discharge hose or adjustable wand is more likely to result in the extinguisher being properly held in an upright position during use and provides a means of directing a stream of agent to more inaccessible areas. Adjustable wand extinguishers, as well as fixed nozzle extinguishers allow one-handed use. ### 8.3 GUIDANCE FOR SAFE NON-TOXIC USE OF HALOCARBON EXTINGUISHERS #### 8.3.1 Precautions: 8.3.1.1 Exposure to halocarbon clean agents and their decomposition products is of far less concern than the consequences of an unextinguished fire which include: the loss of the aircraft and it's occupants, and the immediate toxic hazard from exposure to thermal decomposition products of the burning materials, especially carbon monoxide, smoke, heat, and oxygen depletion. - 8.3.1.2 The designer should make every effort to consider the effects of ventilation, stratification and low oxygen hypoxia when selecting and sizing the necessary fire protection. This includes consideration of enhanced toxicity due to stratification into the cockpit for an aircraft in descent, as well as stratification of agent into lower level sleeping quarters while in-flight. Perfect mixing was assumed for the non-toxic safe-use guidance in this AC. - 8.3.1.3 For aircraft cabins that are smaller than the minimum safe volume for all the halocarbon extinguishers in the cabin, extinguishers with the least toxic agent should be placed in the aircraft (see table 3 for guidance). Place warning label on the extinguisher to stop discharge as soon as the fire is extinguished. - 8.3.1.4 If extinguishers exceeding the maximum safe weights are installed, use of protective breathing equipment is recommended. - 8.3.1.5 Exposure to high levels of clean halocarbon vapors exceeding the amounts allowed in this AC may result in dizziness, impaired coordination, reduced mental sharpness, and heart arrhythmias, depending on agent concentrations and the duration of exposure. See "NFPA Standard 2001 for Clean Agent Fire Extinguishing Systems" for more detailed information. - 8.3.1.6 Ventilate the compartment promptly, overboard, if possible, after successfully extinguishing the fire to reduce the gaseous combustion and gases produced by thermal decomposition. Follow fire fighting procedures for protective breathing apparatus. - 8.3.1.7 Unnecessary exposure of personnel to halocarbon clean agent including at or below the recommended maximum safe nontoxic levels, and halocarbon decomposition products shall be avoided. Means shall be provided to limit exposure to no longer than 5 minutes. After extinguishing the fire, the aircraft should be ventilated at the highest possible rate to rid the cabin and cockpit of hazardous gases and smoke. Small unpressurized aircraft/ rotorcraft can increase ventilation significantly by opening windows and dropping to an altitude of 8,000 feet or lower. Protective breathing equipment should be used if available. Unprotected personnel should not enter a protected space during or after agent discharge, until ventilated. Exposures to halocarbon clean agents longer than 5 minutes may have anesthetic effects. - 8.3.1.8 The decomposition products of the halocarbon clean agents have a characteristic sharp, acrid odor, and an eye irritating effects, even in concentrations of only a few parts per million. Halogenated agents decompose when subjected to flame or hot surfaces. - 8.3.1.9 The minimum safe non-toxic volumes for extinguishers in pressurized and unpressurized aircraft should be stamped on each extinguishing bottle. The stamped volumes should be based on no ventilation, even for aircraft with a known ventilation. These minimum safe volumes are based on the safe non-toxic agent guidance in this circular. The UL minimum safe volumes should not be marked on aircraft extinguishers. They are not applicable for aircraft use. ### 8.3.2* Guidance for Unventilated Passenger and Crew Compartments Nonventilated guidance should be used for compartments where the air change time of the compartment is not known, or exceeds 6 minutes. Nonventilated guidance should also be used if the selector graphs for ventilated aircraft are not available for that agent in 8.3.3. 8.3.2.1 If halocarbon clean agent extinguishers are installed in a nonventilated passenger or crew compartment, and the compartment cannot be vented, and the occupants cannot leave if the extinguishers are discharged, then the total agent available from <u>all</u> the hand held extinguishers onboard the aircraft should not be capable of producing concentrations in the compartment, by volume at 70 Deg F (21 Deg C), assuming perfect mixing, that exceeds the agent's safe nontoxic exposure guidelines as indicated in Table 1. Note that the weight to be used is the total weight of agent contained in <u>all</u> hand-held extinguishers in the aircraft cabin. The basis for this table is discussed in appendix A. Multiply the volume obtained from the table by the number of 5B:C extinguishers to obtain the minimum safe volume for that agent on the aircraft. 8.3.2.2 The toxicity guidelines in the proposed halocarbon advisory circular allow the following minimum compartment volumes for the following 5 B:C extinguishers, released at $70^{\circ}F$: (21.1°C) into nonventilated compartments. See table 1. Multiply the tabulated minimum safe volume of one 5 B:C extinguisher by the number of extinguishers in the cabin to obtain the minimum safe volume. Table 1. Minimum Safe Volume for One 5 B:C Extinguisher, X_{1Bottle} a,b for Unventilated Compartments and Compartments with Unknown Ventilation | Agent | Agent | Minimum Safe Volume for 1 extinguisher, X _{1Bottle} ^b (ft ³) | | | | | |-------------------------|--------------|--|------------------------------|------------------------------------|--|--| | | Weight (lbs) | For Sea Level
(For info only) | Pressurized A/C ^c | Non-Pressurized A/C ^{c,d} | | | | | | ` ; | | | | | | HCFC Blend B | 5.0 | 1286 | 1730 | 2188 | | | | HFC236fa | 4.75 | 82 | 110 | 139 ^e | | | | HFC227ea | 5.75 | 108 | 146 | 184 ^e | | | | Halon 1211 ^f | 2.5 | 556 | 749 ^f | 947 ^f | | | a) Use this table if the air change time is unknown, or exceeds 6 minutes. If extinguishers other than 5B:C extinguishers can be found in the cabin, The maximum safe non-toxic weight of agent per unit volume can be obtained from table 2. The tabulated values are based on the release of the halocarbon agents at $70^{\circ}F: (21.1^{\circ}C)$ into nonventilated compartments. The minimum safe volume can be obtained by dividing the total weight of agent in the cabin by the tabulated weight/volume for that agent. Table 2 Maximum Safe Weight per Unit Volume for Unventilated Aircraft | Agent Maximum Safe Weight/ Volume (pounds/ft ³) | | |---|--| |---|--| b) Multiply this number by the number of extinguishers in the aircraft to obtain the minimum safe volume of the aircraft. c) Ventilate the compartment immediately, preferably overboard, after successfully extinguishing the fire. d) All Unpressurized aircraft should descend immediately to an altitude that is as low as practicable. e) Unpressurized aircraft should descend at a minimum rate of 1,000 ft/minute (for agents HFC236fa or HFC227ea) if the cabin volume is less than twice the minimum safe volume, to avoid the lifethreatening hazards of hypoxia resulting from the agent displacing oxygen. f) The Halon 1211 data in this table uses the halocarbon extinguisher toxicity guidance provided in this circular. It is included in this AC for comparison purposes only. | | For Sea Level
(For info only) | Pressurized
Aircraft ^c | Non-Pressurized
Aircraft ^{c,d} | |-------------------------|----------------------------------|--------------------------------------|--| | HCFC Blend B | 0.00389 | 0.00289 | 0.00229 | | HFC236fa | 0.0579 | 0.0432 | 0.0342 ^e | | HFC227ea | 0.0532 | 0.0394 | 0.0313 ^e | | Halon 1211 ^f | 0.00450 | $0.0034^{\rm f}$ | $0.00264^{\rm f}$ | - a) Use this table if the air change time is unknown, or exceeds 6 minutes. - b) Multiply this number by the number of extinguishers in the aircraft to obtain the minimum safe volume of the aircraft. - c) Ventilate the compartment immediately, preferably overboard, after successfully extinguishing the fire. - d) All Unpressurized aircraft should descend immediately to an altitude that is as low as practicable. - e) Unpressurized aircraft should descend at a minimum rate of 1,000 ft/minute, to avoid the lifethreatening hazards of hypoxia resulting from the agent displacing oxygen and to minimize exposure to the halocarbon agent. - f) This Halon 1211 data in this table uses the halocarbon extinguisher toxicity guidance provided in this circular. It is included in this AC
for comparison purposes only. - 8.3.2.3 Ventilate immediately after agent discharged and fire is extinguished. Increase ventilation to the highest possible rate. - 8.3.2.4 All unpressurized aircraft should descend immediately to an altitude that is as low as practicable. This dilutes the agent concentration and minimizes exposure to the halocarbon agent. - 8.3.2.5 Unpressurized aircraft should descend at a minimum rate of 1,000 ft/minute, to avoid the life-threatening hazards of hypoxia resulting from the agent displacing oxygen and to minimize exposure to the halocarbon agent . - 8.3.2.6 Health and safety advantages associated with small volume occupied spaces on larger aircraft (flight decks) do not usually exist for the smaller aircraft. These advantages are a forced ventilation system, availability of oxygen masks, and availability of a second individual capable of flying the aircraft. ### 8.3.3* Guidance for Ventilated Passenger and Crew Compartments 8.3.3.1 For ventilated compartments, the graphs shown in figures 1 and 2 can be used to find safe extinguisher sizes, when compartment volume and ventilation rates are controllable and known. If compartment volumes and ventilation rates are not known or if the air change time for the compartment exceeds 6 minutes, these selector graphs should not be used: Use tables 1 or 2 to ensure safe extinguisher sizes as described in 8.3.2. These selector graphs are based on the assumption of perfect mixing. The weight to be used is the total weight of agent contained in all hand-held extinguishers in the aircraft cabin. - 8.3.3.2 Ventilate immediately after agent discharged and fire is extinguished. Increase ventilation to the highest possible rate. - 8.3.3.3 Unpressurized aircraft should descend at a minimum rate of 1,000 ft/minute to avoid the life threatening hazards of low oxygen hypoxia resulting from the agent displacing oxygen. (This guidance should be followed for ventilated as well as nonventilated compartments). 8.3.3.4 Immediate descent to an altitude that is as low as practicable is recommended for all unpressurized aircraft to minimize the dangers of hypoxia and exposure to halogenated agents. Pressurized aircraft benefit from descent below 8,000 feet. 8.3.3.5 If extinguishers exceeding the maximum safe weights, are installed, use of protective breathing equipment is recommended. Figure 1. HFC 236fa Selector for Compartments with a known Air Change Time ### Note to Task Group: The AC can be updated as new agents and new graphs are submitted to the FAA Transport Aviation Directorate. ### 8.3.4 Guidance for Accessible Cargo Compartments - 8.3.4.1 For accessible cargo compartments, in combination passenger/cargo and cargo aircraft, the amount of halocarbon extinguishing agent required for this application may be outside the range of allowable exposures, and protective breathing equipment should be donned before entering the compartment. - 8.3.4.2 FAR 25.857 requires that the aircraft systems are designed such that unsafe concentrations of extinguishing agent, for fighting accessible cargo compartment fires, will not enter the cabin. Nonetheless, the cargo compartment door should be closed after extinguishing the fire. - 8.3.4.3 For accessible cargo compartments, smaller than 200 cubic feet, which are not protected by fire protection flooding systems, in combination passenger/cargo and cargo aircraft, halocarbon clean agent extinguishers should have a listed classification not less than 2-A:10B:C. - 8.3.4.4 Accessible cargo compartments of 200 cubic feet and larger, in combination passenger/cargo and cargo aircraft, should meet the requirements of the FAA Airworthiness directive 93-07-15. Note that this AD specifies acceptable forms of fire protection as an option to the use of hand-held fire extinguishers. These options include converting that compartment to meet the requirements of a class C cargo compartment or the use of fire containment containers or covers. - 8.3.4.5 The AD 93-07-15 requirements for portable fire extinguisher bottles include: (i) The AD recommends the use of Halon 1211 or it's equivalent and water portable fire extinguishers for fire protection of accessible cargo compartments. Halon1211 equivalency is met as follows: Provide a minimum of three UL rated 2A-10B:C extinguishers (equivalent to the AD's requirement of 48 lbs. Halon 1211) in portable fire extinguisher bottles readily available for use in the cargo compartment. (ii) AD 93-07-15 also requires the provision of at least two Underwriters Laboratories (UL)2A (2-1/2 gallon) rated water portable fire extinguishers, or its equivalent, adjacent to the cargo compartment entrance for use in the compartment. (iii) Provide a minimum of 30 minutes of protective breathing. This equipment must meet the requirements of Technical Standard Order (TSO) C-116, Action Notice 8150.2A, or equivalent, and be stored adjacent to the cargo compartment entrance. - 8.3.4.6 Extinguishers (mounted alongside the entrance to the cargo compartment) intended for use to fight cargo fires in accessible cargo compartments in combination passenger/cargo and cargo aircraft, should be available to extinguish cabin fires. Select an extinguisher for that accessible cargo compartment that meets the safe nontoxic use guidance for the aircraft cabin. It should not exceed the maximum safe weight for the aircraft cabin. If no extinguisher, intended for use to fight fires in accessible cargo compartments, is available that meets the safe nontoxic use criteria for the aircraft cabin, consider converting that cargo compartment to a class C compartment with a fire suppression system, or any other technology that would provide effective fire protection. Provide means to restrict personnel from entering the cargo compartment for the flight duration. If no extinguisher, intended for use to fight fires in accessible cargo compartments, is available that meets the safe nontoxic use criteria for the aircraft cabin, do not use an extinguisher with a lower UL Rating than recommended for the cargo compartment. Select the <u>least toxic</u> extinguisher of the required rating (the extinguisher that can be used \underline{most} safely, if it was used in the cabin). If the contents of the extinguisher exceed the safe nontoxic levels for the cabin, place a warning on or alongside the bottle stating: "Discharge of the entire contents of this size bottle into the occupied cabin area exceeds safe exposure limits. Use only the amount necessary to extinguish a fire." 8.3.4.7 Refer to the Precautions section 8.3.1 for actions that personnel should take to limit exposure. ### CHAPTER 9. LOCATION AND MOUNTING OF HAND FIRE EXTINGUISHERS. ### 9.1 LOCATION AND MOUNTING OF HAND FIRE EXTINGUISHERS IN PASSENGER COMPARTMENTS. It is acceptable to install fire extinguishers in passenger compartments according to the following criteria: - 9.1.1 In general, locate hand fire extinguishers adjacent to the hazardous area (i.e., galleys, accessible baggage or cargo compartments, electrical equipment racks, etc.) they are intended to protect. - 9.1.2 If no clearly defined hazardous area exists, locate the hand fire extinguishers as follows: - 9.1.2.1 When one extinguisher is used, locate it at the flight attendant's station or, when no flight attendant is required, locate the extinguisher at the passenger entrance door. - 9.1.2.2 When two or more extinguishers are used, locate one at each end of the passenger compartment and space the remainder uniformly within the cabin area. - 9.1.3 Mount hand fire extinguishers so that they are readily available. If they are not visible in their mounted position, a placard (with letters at least 3/8-inch high) may be used to indicate their location. - 9.1.3.1 Due to the weight of hand fire extinguishers, the aircraft structure and extinguisher mounting brackets should be capable of withstanding the inertia forces required in Sections 23.561, 25.561, 27.561, and 29.561 of the Federal Aviation Regulations, with the hand fire extinguisher installed. If extinguishers are replacing halon extinguishers, the mounting system may need to be strengthened, as the halocarbon extinguishers are much heavier than halon extinguishers. Evaluate the mounting system to make sure it is adequate. - 9.1.3.2 Halocarbon clean agent extinguishers can be twice the weight of the Halon extinguishers they are replacing. Mount them in a low enough position that a frail, short flight attendant can access them quickly. (c)Currently FAA approved 5B:C Halon replacement fire extinguishers weigh over 9 pounds. Installation of an extinguisher should include vertical reach combined with horizontal (offset) reach to ensure ease of retrieval from overhead compartments. The vertical reach should not exceed 74.5 in. (189.23 cm) combined with an offset reach of 7.87 in. (20cm) to permit a 5 percentile female, 60.5 in. (153.67 cm.) tall to quickly access the extinguisher. - 9.1.3.3 The weight of the hand fire extinguisher and its mounting bracket should be added to the aircraft empty weight and a new empty weight center of gravity computed. - 9.1.4 Fire extinguisher selection should be made with regard to the type of fire hazard (Class A, B, C, or D) to be encountered. If extinguishers intended for different classes of fire are grouped together, their intended use should be marked conspicuously to aid in the choice of the proper extinguisher at the time of the fire. ### 9.2 LOCATION AND MOUNTING OF HAND FIRE EXTINGUISHERS IN SMALL SINGLE ENGINE AND MULTIENGINE AIRCRAFT. - 9.2.1 Locate hand fire extinguishers so that they are easily accessible to the flight crew and the passengers. - 9.2.2 Hand fire extinguishers should not he allowed to lie loose on shelves or seats. Fire extinguishers and mounting brackets should be properly mounted to the airframe structure capable of withstanding the inertia forces required by the FAR sections listed in paragraph 7g(3)(a) of this
AC. ### CHAPTER 10. GENERAL INFORMATION ### 10.1 CORROSION BY EXTINGUISHING AGENTS. Neat halocarbon clean agents are not corrosive, but any halocarbon's corrosive properties should be reviewed for acceptability to aircraft materials. Water itself is not corrosive, but may be rendered corrosive by the addition of antifreeze solutions. ### 10.2 OPERATING TEMPERATURE REQUIREMENTS FOR HALOCARBON CLEAN AGENT HAND FIRE EXTINGUISHERS. The extinguisher should operate properly after being conditioned at minus 40°F or minus 65°F as applicable and 120°F for 16 hours as specified in UL 2129.UL 2129 provides that "Not less than 90 percent(by weight) of the rated capacity of halocarbon clean agent fire extinguishers shall be discharged when an extinguisher is operated after being conditioned at the minimum storage temperature (minus 40+/- 4°F (minus 40+/- 2°C), or minus $65+/-4^{\circ}\text{F}$ (minus 54.5+/- 2°C) as applicable, and at 120+/- 4°F (48.9+/- 2°C) for at least to hours. There shall be no leakage from the extinguisher during the conditioning cycle" ### 10.3 FACTORY SEALED ("DISPOSABLE TYPE") FIRE EXTINGUISHERS. Disposable type fire extinguishers should be maintained and inspected in accordance with the nameplate instructions. 10.3.1 Nonrefillable disposable fire extinguishers have plastic discharge heads installed. Care should he exercised in the location of this type of fire extinguisher to eliminate damage. ### Are there any water or halon disposable extinguishers on aircraft? 3/7/84 10.3.2 Nonrefillable disposable fire extinguishers are exempt from the periodic hydrostatic test requirements. ### 10.4 PROPERTIES OF HALOGENATED AGENT EXTINGUISHERS. - 10.4.1 Halocarbon clean agents are suitable for use in cold weather and leave no residue. - 10.4.2 HCFC Blend B, HFC 236fa, and HFC 227ea are approximately half as effective as Halon 1211 for a given weight of agent. - 10.4.3 HCFC Blend B is a rapidly evaporating liquid. HFC227ea and HFC-236fa are liquefied gases. These agents are pressurized with inert gases. These halocarbon agents leave the nozzle in a stream that is partly liquid and partly gas. - 10.4.4 Halocarbons that are gaseous upon discharge have a more limited throw range. Halocarbons have discharge characteristics dependent on the halocarbon and the nozzle design. Throw ranges of 10 feet and higher provide significant advantages in fighting fires in large aircraft cabins. - 10.4.5 Because they are discharged as a gas or rapidly evaporating liquid, halocarbon clean agents leave no chemical residue behind to contaminate or corrode aircraft parts or surfaces. - 10.4.6 Other advantages of halocarbon clean agents are low cold shock characteristics on electronic equipment, no degradation of visual acuity, and low pressure. ### 10.5 INSPECTION, HYDROSTATIC TEST AND LIFE LIMITS. Recommended procedures for the inspection, hydrostatic test and life limits of pressure cylinders are outlined in Part 173, Chapter 1, Subparts B, and G of CFR 49 currently in effect. See CFR 49, Part 173.306(c) (5) regarding retest intervals for fire extinguishers. #### CHAPTER 11. RELATED RESEARCH MATERIAL - UL2129 Halocarbon Clean Agent Fire Extinguishers, ISBN 0-7629-0408-9, Copyright 2000, Underwriters Laboratories Inc. - NFPA 10 Standard for Portable Fire Extinguishers, Copyright 1998 NFPA - Webster, Harry, "Development of a Minimum Performance Standard for Hand-Held Fire Extinguishers as a Replacement for Halon 1211 on Civilian Transport Category Aircraft", Federal Aviation Administration Report No.DOT/FAA/AR-01/37 - Hill, R.G., and Speitel, L., "In-Flight Aircraft Seat Fire Extinguishing Tests (Cabin Hazard Measurements)", Federal Aviation Administration Report No. DOT/FAA/CT-82/111, , December 1982 - Halon Extinguishment of Small Aircraft Instrument Panel Fires, DOT/FAA/CT-86/26, Slusher, G.R., Wright, J.A., and Speitel, L.C., December 1986 - NFPA 408, Standard for Aircraft Hand Portable Fire Extinguishers, 1999 Edition - NFPA 12B Standard on Halon 1211 Fire Extinguishing Systems, 1990 Edition - NFPA 2001 Standard on Clean Agent Fire Extinguishing Systems, 2004 Edition, National Fire Protection Association, 1 Batterymarch Park, Quincy, Massachusetts, Feb. 2004. - Vinegar, A., Jepson, G.W. and Overton, J.H (1998): PBPK Modeling of Short-term (0-5 min) Human Inhalation Exposures to Halogenated Hydrocarbons, Inhalation Toxicology, 10:411-429. **Note:** This is an early document, which provides human validation data for the PBPK approach and provides detailed mathematical descriptions of the respiratory component of the PBPK model. This document also has an example of Halon 1211 release in a military tank and the evaluation of the exposure and consequences using PBPK modeling. • Vinegar, A., Jepson, G.W., Cisneros, M., Rubenstein, R. and Brock, W.J. (2000): Setting Safe Acute Exposure Limits for Halon Replacement Chemicals Using Physiologically Based Pharmacokinetic Modeling, Inhalation Toxicology, 12:751-763. Note: This is the document that provides the basis for the tables in NFPA 2001 (2000 edition). It also provides safe exposure data for Halon 1301, which is not shown in NFPA 2001. It is interesting to note using the PBPK modeling approach, Halon 1301 cannot be safely used at concentrations above 6% v/v for more than 5 minutes. • Vinegar, A (2001): Modeling Cardiac Sensitization Potential of Humans Exposed to Halon 1301 or Halon 1211 Aboard Aircraft, Aviation, Space and Environmental Medicine, Vol. 72, No. 10. Note: This paper illustrates Halon 1301 and Halon 1211 application aboard aircraft and compares the predicted human blood levels to cardiac sensitization. While predicted Halon 1301 blood levels did not exceed cardiac sensitization thresholds, Halon 1211 levels did exceed the thresholds in several areas. • Vinegar, A., Jepson, G.W., Hammann, S.J., Harper, G., Dierdorf, D.S. and Overton, J.H.(1999): Simulated Blood Levels of CF_3I in Personnel Exposed During Its Release from an F-15 Jet Engine Nacelle and During Intentional Inhalation, AIHA Journal, 60:403-408. **Note:** This paper establishes the precedent of predicting human blood levels of agent during conditions of changing exposure concentration. This sort of an approach would be required to accommodate perfect mixing decay curves for various air change rates - Webster, Harry, "Development of a Minimum Performance Standard (MPS) for Hand-Held Fire Extinguishers as a replacement for Halon 1211 on Civilian Transport Category Aircraft" Federal Aviation Administration Report No.DOT/FAA/AR-01/37, 2002 - Eklund, Thor I. "Analysis of Dissipation of Gaseous Extinguishing Agents in Ventilated Compartments" Federal Aviation Administration Report No. DOT/FAA/CT-83/1, 1993. **Note:** This report develops the calculation of agent dissipation as a function of time using the perfect stirrer model. It also describes the theory and assumptions used in the development of the nomographs for the Halons. - Speitel, Louise C. "Setting Safe Acute Exposure Limits for Dissipating Gaseous Halon and Halocarbon Extinguishing Agents in Ventilated Compartments" Federal Aviation Administration: Report to be published. Note: This report provides a simple first order pharmacokinetic solution for changing concentrations of halocarbons. - Slusher, Gerald R., Wright, Joseph, Demaree, James, "Halon Extinguisher Agent Behavior in a Ventilated Small Aircraft", Federal Aviation Administration Report No. DOT/FAA/CT-86/5, 1986 - Slusher, G.R., Wright, J., Demaree, J.E., Neese, W.E. "Extinguisher Agent Behavior in a Vantilated Small Aircraft, Federal Aviation Administration Report No. DOT/FAA/CT-83-30,1984 - Abramowitz, A., Neese, W., Slusher, G, "Smoke and Extinguisher Agent Dissipation in a Small Pressurized Fuselage" Federal Aviation Administration, Report No. DOT/FAA/CT-89/31, 1990. - Krasner, L.M. "Study of Hand-held Fire Extinguishers aboard Civil Aviation Aircraft" Factory Mutual Research Corporation, Federal Aviation Administration Report No. DOT/FAA/CT-82/42, 1982 Note: This report reviews human exposure data for Halon 1211 and 1301 • Chattaway, A. "The Development of A Hidden Fire Test for Aircraft Hand Extinguisher Applications", Civil Aviation Authority Paper No. 95013, London, 1995. **Note:** This report describes the development of the hidden fire test for hand-held extinguishers. - CFR Title 40: Protection of the Environment, Part 82-Protection of Stratospheric Ozone, Subpart G-Significant New Alternatives Policy Program and Subpart H-Halon Emissions Reduction - Cherry, R.G. W. et al, "A benefit Analysis for Enhanced Protection from Fires in Hidden Areas on Transport Aircraft", Federal Aviation Administration Report No. DOT/FAA/AR-02/50, CAA Paper 2002/01. - Blake, D.R. "Effectiveness of Flight Attendants Attempting to Extinguish Fires in an Accessible Cargo Compartment", Federal Aviation Administration Technical Note DOT/FAA/AR-TN99/29, 1999 ### CHAPTER 12. HOW CAN I OBTAIN FAA PUBLICATIONS Contact the National Technical Information Service, Springfield, Va 22161 FAA publications can also be found on the following Web Site of the FAA Fire Safety Branch: http://www.fire.tc.faa.gov/reports/ ### APPENDIX A Explanatory Material Appendix A is not a part of the guidance of this advisory circular but it is included for information purposes only. This appendix contains explanatory material, numbered to correspond with the applicable text paragraphs. #### A-8.2 EFFECTIVE THROW RANGES Table A1. Effective Throw Ranges for Halocarbon Halon Replacement and Water $\mathsf{Extinquishers}^\star$ | Agent | Effective Throw Ranges for UL/ULC Rated Extinguishers | | | | | |--------------|---|------------|-----------|------------|--| | | 5-B:C 1A-10 B:C 2A 2A-10 B:C | | | | | | HCFC Blend B | 9 - 15 ft | 9 - 15 ft | | 12 - 18 ft |
| | HFC-236fa | 10- 12 ft. | 14- 16 ft. | | 14-16 ft | | | HFC-227ea | ? | N/A | | N/A | | | Water | | | 30-40 ft. | | | ^{*} Check with extinguisher manufacturer for actual throw range, as it depends on the nozzle design and other factors: It is extinguisher dependent. ### A-8.3.2 BASIS FOR THE MINIMUM SAFE NON-TOXIC HALOCARBON WEIGHT TO VOLUME RATIOS If halocarbon clean agent extinguishers are installed in a nonventilated passenger or crew compartment, and the compartment cannot be vented, and the occupants cannot leave if the extinguishers are discharged, then the total agent available <u>from all the hand held extinguishers</u> on-board the aircraft should not be capable of producing concentrations in the compartment, by volume at 70 Deg F (21°C) assuming perfect mixing, that exceeds the agent's safe nontoxic exposure guidelines as indicated by its pharmacokinetic(PBPK) derived 5 minute safe human exposure concentration, if known (Table A2). Otherwise, If PBPK data is not available, the Agent No Observable Adverse Effect Level (NOAEL) is to be used (Tale A2). Exposures to halocarbon agents must be limited to less than 5 minutes. Table A2. Maximum Safe Exposure Concentrations for Unventilated Compartments and Compartments where the Ventilation is not Known | Agent | Maximum Safe 5 minute | NOAEL ^{b,c,d} | FAA Guidelines: | |-------------------------|---------------------------------|------------------------|---------------------| | | Human Exposure ^{a,b,c} | (%v/v) | Safe Non-toxic | | | Concentration | | Concentration | | | (%v/v) | | (%v/v) | | HCFC Blend B | unknown | 1.0 ^e | 1.0 ^f | | HFC 227ea | 10.5 | 9.0 | 10.5 ^{f,g} | | HFC236fa | 12.5 | 10.0 | 12.5 ^{f,g} | | Halon 1211 ^h | 1.0 | 0.5 | 1.0 ^h | - a) Data derived from the EPA-approved and peer reviewed PBPK model or it's equivalent found in: Vinegar, A., Jepson, G.W., Cisneros, M., Rubenstein, R. and Brock, W.J. (2000): Setting Safe Acute Exposure Limits for Halon Replacement Chemicals Using Physiologically Based Pharmacokinetic Modeling, Inhalation Toxicology, 12:751-763. Based on constant exposure level for duration of exposure. c)NFPA 2001 Standard on Clean Agent Fire Extinguishing Systems, 2004 Edition, National Fire Protection Association, 1 Batterymarch Park, Quincy, Massachusetts, Feb. 2004. - d) Based on Canine Data - e) Obtained from the manufacturer - Immediate descent to the lowest practicable altitude is recommended for all unpressurized aircraft to minimize exposure to halogenated gases. - g) Unpressurized aircraft should descend at a minimum rate of 1,000 ft/minute if agent weights are greater than half the maximum safe weight for a given volume to avoid the life-threatening hazards of low- oxygen hypoxia resulting from the agent displacing oxygen from the air in the compartment. This holds for ventilated and nonventilated compartments. - h) Halon Data is provided for comparison only. See AC20-42C for current Halon Guidance. Use equation A1 to find the maximum safe W/V for any halocarbon extinguisher to be used on an aircraft: $$\left(\frac{W}{V}\right)_{\mathit{Safe}} = \left(\frac{1}{S \bullet A}\right) \bullet \frac{(C_{\mathit{Safe}})}{(100 - C_{\mathit{Safe}})} \tag{eqn Al}$$ where A= Altitude correction factor for S For pressurized aircraft, use the pressure altitude of 8,000 feet: A=1.346 For unpressurized aircraft, use the pressure altitude of 14,000 feet: A=1.702 V is the net volume of the space, calculated as the gross volume minus the volume of fixed structures, ft3. W is the maximum safe non-toxic weight of the clean agent, lb for a volume V, (if all extinguishers are discharged); S is the specific volume of the agent at 70° F (21° C), ft^{3}/lb ; C_{Safe} is the FAA allowed clean agent concentration (% by volume) $X_{1Bottle}$ is the minimum safe non-toxic compartment volume for 1 bottle $(W/V)_{\text{safe}}$ is based on all hand extinguishers in the cabin The minimum safe non-toxic compartment volume is based on all bottles in the aircraft cabin. It can be calculated as follows: $$X_{AllBottles} = X_{1Bottle} \bullet \# Bottles$$ Table A3. Specific Volume of halocarbon agents | Agent | Specific Volume of Agent at 1 atm and 70deg F (ft ³ /lb) | |--------------|---| | HCFC Blend B | 2 597 ^a | | HFC 227ea | 2.2075 ^{a,b} | | HFC-236fa | 2.4574 ^a | a) Obtained from the manufacturer. This calculation includes an allowance for the normal leakage from a "tight" enclosure due to agent expansion. This minimum safe non- toxic volume for nonventilated aircraft is to be used for poorly ventilated aircraft or compartments with an air change time of 6 minutes and greater, and when graphs for ventilated aircraft are not available for a particular agent. ### A-8.3.3 CALCULATION BASIS FOR THE MINIMUM SAFE NON-TOXIC HALOCARBON WEIGHT TO VOLUME RATIOS FOR VENTILATED AIRCRAFT The selector graphs were developed by applying pharmacokinetic modeling of blood concentration data to perfect mixing agent decay curves. The methodology used to develop the selector curves is described in reference: Speitel, Louise C. "Setting Safe Acute Exposure Limits for Dissipating Gaseous Halon and Halocarbon Extinguishing Agents in Ventilated Compartments" Federal Aviation Administration: Report to be published. b) NFPA 2001 Standard on Clean Agent Fire Extinguishing Systems, 2004 Edition, National Fire Protection Association, 1 Batterymarch Park, Quincy, Massachusetts, Feb. 2004. ### Appendix B: Table B1 Effective and Gross Weights of Halocarbon and Water Extinguishers | | | | | Fire size | Agent and Extinguishers* | | | | | |---------------|-------------------------------------|---|--------------------------------|----------------------------|----------------------------------|--|--|-------------------------------------|----------------------------------| | Rating | Fire size
Class A,
Panel Fire | Fire size
Class A,
Crib Fire | Fire size
Class B
Novice | Class B
Experienc
ed | Halon 1211 | Water | HFC 236fa | HCFC
BlendB | HFC227ea | | UL 5-B:C | N/A | N/A | 5 sq ft | 12.5 sq ft | Agent 2.5 lb
Gross Wt. 3.7 lb | | Agent 4.75
lb.
ross Wt. 9.5
lb. | Agent 5.2 lb
Gross Wt. 9.6
lb | Agent 5.75 lb
Gross Wt. | | UL 1-A:5-B:C | 8 ft x 8 ft | 72 members
2 x 2 x 20 in.
12 layers of 6 | 5 sq ft | 12.5 sq ft | Agent 3.5 lb
Gross 4.4 lb | | | | Greece Wi. | | UL 1-A:10-B:C | 8 ft x 8 ft | 72 members
2 x 2 x 20 in.
12 layers of 6 | 10 sq ft | 25 sq ft | Agent 9 lb
Gross Wt. +16 lb | | Agent 9.5 lb.
Gross Wt.
21.81lb. | Agent 11 lb
Gross Wt. 22
lb | | | UL 2A | 10 ft x 10
ft | 112 members
2 x 2 x 25 in.
16 layers of 7 | N/A | N/A | | Agent 22 lb (2.5gal)
Gross Wt. 28 lb. | | | | | UL 2-A:10-B:C | 10 ft x 10
ft | 112 members
2 x 2 x 25 in.
16 layers of 7 | 10 sq ft | 25 sq ft | | | | Agent 13 lb
Gross Wt. 26
lb | Agent 15.5 lb
Gross Wt. 27 lb | | UL 2A-40 B:C | 10 ft x 10
ft | 112 members
2 x 2 x 25 in.
16 layers of 7 | 40 sq ft | 100 sq ft | Agent 16 lb
Gross Wt. 33 lb | | | | | Table B2 (FOR COMMITTEE USE ONLY) The information in the table below is from: Hocking, M.B. (1998). Indoor Air Quality:Recommendations Relevent to Aircraft Passenger Cabins. American Industrial Hygiene Association Journal 59:446-454 | | Minimum
Reported
Air | Minutes | Cabin | Cabin | |-----------------------------------|----------------------------|-------------------|---------------|-------------| | Aircraft | Changes
Per Hour | for Air
Change | Volume,
m3 | Volume, ft3 | | Boeing 737-100 | 26.1 | 2.30 | 120 | 4238 | | McDonald Douglas DC9-30 | 27.3 | 2.20 | 124 | 4379 | | Boeing 737-200 | 17.7 | 3.39 | 131 | 4626 | | McDonald Douglas DC9-50 | 18.8 | 3.19 | 148 | 5227 | | McDonald Douglass DC10-10 | 22.8 | 2.63 | 149 | 5262 | | Boeing 737-300 (42) | 14.2 | 4.23 | 149 | 5262 | | Boeing 727-100 | 22.9 | 2.62 | 151 | 5333 | | Boeing 727-200 | 18.8 | 3.19 | 165 | 5827 | | McDonald Douglas DC9-80/MD80 (22) | 19.7 | 3.05 | 173 | 6109 | | Boeing 757 (48) | 15.6 | 3.85 | 276 | 9747 | | Boeing 767-200 (52) | 10.3 | 5.83 | 319 | 11265 | | Airbus Industrie 310 (53) | 9.7 | 6.19 | 334 | 11795 | | McDonald Douglas DC10-40 (35) | 14.9 | 4.03 | 419 | 14797 | | Boeing 767-300 (-) | 11.1 | 5.41 | 428 | 15115 | | Lockheed L1011-50 | 19.3 | 3.11 | 494 | 17445 | | Lockheed L1011-1/100 | 17.8 | 3.37 | 537 | 18964 | | Boeing 747 (26) | 14.7 | 4.08 | 790 | 27899 | | | Avg. | 3.68 | | | ### **Volumes for Smaller Commercial Aircraft** | Aircraft | Number of Seats | Cabin
Volume,
ft3 | |--------------------------|-----------------|-------------------------| | Embraer ERJ-135 | 37 | 968 | | Embraer Brasilia EMB-120 | 30 | 968 | | Saab-340A & 340B | 33 | 1180 | | Fairchild Dornier 328 | 32 | 1183 | | DASH-8, 100&200 series | 37 | 1328 | | Saab 2000 | 50 | 1860 | | Embraer ERJ-145 | 50 | 1872 | | CRJ-200 | 50 | 2015 | | CRJ-700 | 64 | 2682 | | DASH-8, 400 series | 78 | 2740 | ### Volumes for Aircraft that normally seat 6 to 8 passengers | Aircraft | Cabin
Volume,
ft3 | |----------------------|-------------------------| | Piper PA31T Cheyenne | 151 | | Cessna Caravan II | 152 | | Socata TBM-700 | 155 | |---------------------------------------|-----| | Raytheon Beechcraft King Air 90 & 100 | 179 | | | | | Gulfstream Turbo Commander | 184 | | Gulfstream Jetprop | 184 | | Sino Swearingen SJ30-2 | 190 | | Cessna Corsair, Conquest I | 193 | | Cessna 421 | 217 | | Cessna 414 | 226 | | Rockwell Gulfstream Commander GC- | | | 1000 | 249 | | Cessna Caravan 675 | 254 | | Cessna Caravan Amphibian | 254 | | LearJet 31A | 271 | | Cessna Citation CJ1 | 300 | | Raytheon Beechcraft King Air 200 | 303 | | Raytheon Beechjet 400 | 305 | | VisionAire Vantage | 310 | | Raytheon
Premier I | 315 | | Pilatus PC12 | 330 | | Cessna Grand Caravan | 340 | | Cessna Citation CJ2 | 350 | | Raytheon Beechcraft King Air 300/350 | 355 | | LearJet 40 | 363 | | Gulfstream G100 | 367 | | LearJet 45/45XR | 410 | | LearJet 60 | 453 | | Gulfstream G150 | 465 | | Gulfstream G200 | 868 | estimated by Pilatus 79.6 for cockpit six seater includes bathroom and internal baggage 95 for cockpit includes bathroom and internal baggage